Anomaly Detection in Transportation Corridors using Manifold Embedding

نویسندگان

  • Amrudin Agovic
  • Arindam Banerjee
  • Auroop Ganguly
  • Vladimir Protopopescu
چکیده

The formation of secure transportation corridors, where cargoes and shipments from points of entry can be dispatched safely to highly sensitive and secure locations, is a high national priority. One of the key tasks of the program is the detection of anomalous cargo based on sensor readings in truck weigh stations. Due to the high variability, dimensionality, and/or noise content of sensor data in transportation corridors, appropriate feature representation is crucial to the success of anomaly detection methods in this domain. In this paper, we empirically investigate the usefulness of manifold embedding methods for feature representation in anomaly detection problems in the domain of transportation corridors. We focus on both linear methods, such as multi-dimensional scaling (MDS), as well as nonlinear methods, such as locally linear embedding (LLE) and isometric feature mapping (ISOMAP). Our study indicates that such embedding methods provide a natural mechanism for keeping anomalous points away from the dense/normal regions in the embedding of the data. We illustrate the efficacy of manifold embedding methods for anomaly detection through experiments on simulated data as well as real truck data from weigh stations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Anomaly-based Web Attack Detection: The Application of Deep Neural Network Seq2Seq With Attention Mechanism

Today, the use of the Internet and Internet sites has been an integrated part of the people’s lives, and most activities and important data are in the Internet websites. Thus, attempts to intrude into these websites have grown exponentially. Intrusion detection systems (IDS) of web attacks are an approach to protect users. But, these systems are suffering from such drawbacks as low accuracy in ...

متن کامل

Shape Outlier Detection Using Pose Preserving Dynamic Shape Models

In this paper, we introduce a framework for shape outlier, like carrying object, detection in different people from different views using pose preserving dynamic shape models. We model dynamic human shape deformations in different people using kinematics manifold embedding and decomposition of nonlinear mapping using kernel map and multilinear analysis. The generative model supports pose-preser...

متن کامل

Nonparametric Kernel Estimation and Regression on Distributions

Low-dimensional embedding, manifold learning, clustering, classification, and anomaly detection are among the most important problems in machine learning. The existing methods usually consider the case when each instance has a fixed, finite-dimensional feature representation. We wish to expand the domain of consideration and let each instance correspond to a continuous probability distribution ...

متن کامل

Nonparametric Divergence Estimation with Applications to Machine Learning on Distributions

Low-dimensional embedding, manifold learning, clustering, classification, and anomaly detection are among the most important problems in machine learning. The existing methods usually consider the case when each instance has a fixed, finite-dimensional feature representation. Here we consider a different setting. We assume that each instance corresponds to a continuous probability distribution....

متن کامل

Local Heterotic Torsional Models

We present a class of smooth supersymmetric heterotic solutions with a non-compact Eguchi-Hanson space. The non-compact geometry is embedded as the base of a six-dimensional non-Kähler manifold with a non-trivial torus fiber. We solve the non-linear anomaly equation in this background exactly. We also define a new charge that detects the non-Kählerity of our solutions.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007